
Error-guided Search for Part Assignment in Genetic Circuits

Tammy Qiu
Dept of Computer Science

Boston University
tqiu@bu.edu

Swapnil Bhatia
Dept of Electrical and Computer Engineering

Boston University
bhatia.swapnil@gmail.com

Abstract

The design of genetic circuits using modular genetic parts is
a canonical approach in synthetic biology. This design ap-
proach diverges from conventional electronic design because
an optimal set of genetic parts must be chosen to implement
the design. Previous work in this area uses standard optimiza-
tion algorithms to find a permutation of genetic parts that will
yield a high quality genetic circuit. For example, the Cello de-
sign tool uses simulated annealing to assign parts to a circuit.
Here, we explore a new error-guided approach to the problem
of part assignment. Briefly, the approach propagates the error
between the observed and target behavior of a circuit with a
candidate part assignment back to the gradients of each of the
parameters of the parts used in the circuit, and uses this gradi-
ent to find an improved part assignment. We test this approach
against the extant approach and show that it is promising for
assigning parts to larger, more complex circuits. The algo-
rithm appears to be scalable to circuits with at least 6-inputs
with up to 60 gates.

Cells can navigate complex biochemical environments,
communicate with each other to perform complex tasks, and
react to specific signals. Because of their ability to control
gene expressions, genetic circuits may be designed as the
“control plane” in many synthetic biology applications [2].
One of the unique challenges in creating genetic circuits is
the design of functional circuits from combinations of parts
that may have never been tested together before. To create a
genetic circuit, the abstract circuit implementing the desired
logic must be synthesized and a set of genetic parts must be
found to implement the circuit. For a given logic circuit con-
taining n gates and a part library containing m parts, there
are m!/(m − n)! ∈ O(mn) possible assignments of parts
to gates in the circuit, which grows to trillions of possibil-
ities even with modest library and circuit sizes [5]. Once
designed, the circuits must then be assembled and tested in
the chassis of interest following an expensive high latency
pipeline; therefore it is critical to seed the pipeline with de-
signs with a high chance of success.

The Cello circuit design tool [3] takes as input a speci-
fication of a logic circuit and a library of characterized re-
pressors. Cello synthesizes an abstract circuit satisfying the
given specification and assigns a set of repressors to the cir-

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

cuit such that the desired logic is realized. Cello uses a sim-
ulated annealing algorithm to assign repressors to the circuit
and defines a scoring function to aid the search. The search
algorithm probabilistically chooses a better candidate solu-
tion in the neighborhood of the current solution. Here, we
explore the idea of a search algorithm that relates the param-
eters of the response function of a repressor with the quality
of the truth table produced by a given assignment, and uses
this relationship to guide the search. Our hypothesis is that
information about which repressor and which of its param-
eters must be changed to obtain a better solution can help
guide the search towards high quality solutions. Our prelim-
inary work shows that our hypothesis appears to hold when
the circuit to be designed is large and complex. We see evi-
dence that when the circuit to be realized is large and com-
plex an error-guided approach helps arrive at high scoring
assignments. We show that for 6-input, 30+ gate circuits, an
error-guided approach finds solutions whereas a local search
algorithm like simulated annealing is unable to find any so-
lution.

The Approach
The response function of repressor gates can be expressed in
the form of a Hill equation:

f(x) = ymin +
(ymax − ymin)K

n

xn +Kn
(1)

Each repressor can thus be described with four parame-
ters: K, ymin, ymax, and n. The response function resembles
an ”S” curve with the high and low values of the curve used
as ”on” and ”off” states of the signal. The sloping region of
the curve is avoided as far as possible in a discrete logic cir-
cuit setting. Thus, the inputs to such a gate must fall outside
the sloping region to obtain valid signal behavior. Because
different repressors may have different response functions,
only specific repressor combinations can implement the in-
puts and outputs of each gate in a circuit. Finding an assign-
ment of repressors to a given logic circuit such that a circuit
with robust desired behavior is obtained, is a computation-
ally intractable problem [4]. The quality of a circuit imple-
mentation may be captured by measuring how well it repre-
sents the desired truth table. Given a desired truth table, any
assignment of repressors imposes a signal value to the in-
put and output signals in each row of the truth table. Robust

logic is achieved when the “on” and “off” states of the out-
put are well represented by the output repressor signal. The
Cello tool defines a Range Score of a repressor assignment
as the ratio of the minimum of the on values to the maximum
of the off values in the output column of the truth table, thus
capturing the worst dynamic range of the implementation.

SRange =
min(ON)
max(OFF)

We define a Cosine Score to measure the closeness of the
logic achieved by an assignment with the desired logic. The
Cosine score is defined as below:

SCosine =
V · T
||V ||||T ||

(2)

Here, · is the dot product of the real signal vector V from the
output column of the truth table from the assignment, and T
is the binary output column from the desired truth table. The
score ranges between -1 and 1 and represents the cosine of
the angle between the output truth table generated by the
assignment and the intended truth table.

Error-guided Search
Using the Cosine score, we explore a new approach to
searching for repressor assignments. We define each repres-
sor using the four parameters that define its transfer func-
tion as described by Eqn. 1. Starting from an initial arbitrary
assignment of gates, the algorithm chooses a gate-repressor
assignment to change. The choice of which repressor assign-
ment to modify is governed by the relationship between the
Cosine score of the assignment, and the parameters of each
of the repressors used in the assignment. The algorithm com-
putes partial derivatives of the score with respect to the pa-
rameters of each of the repressors and chooses the repressor
with the highest impact on the score. The partial derivative
of each parameter indicates a direction in which the repres-
sor’s response function must change in the parameter space
to improve the cosine score. A positive partial derivative in-
dicates the need to replace the current repressor with one
whose corresponding parameter is greater in value than the
current repressor, while a negative derivative would indicate
that the repressor must be replaced by one with a smaller
value for that parameter. All repressors are represented as
vectors of their parameters. When the repressor for potential
replacement is identified, other repressors in the library are
ranked in order of their euclidean distance from the repres-
sor marked for replacement, and a candidate replacement is
picked based on the sign of the derivative. The replacement
is accepted only if it improves the circuit’s score. If there
are no suitable repressors, then we look at the next highest
derivative in the list. We continue this process until we have
found a replacement that improves the current score or if
there are no more derivatives left to check.

If replacements cannot improve the score, then we ex-
plore a repressor swapping strategy for the candidate re-
pressor with the largest derivative. The algorithm then com-
pares the results of the two methods and chooses the one that
yields the lowest error. If neither method improves the origi-
nal circuit, the algorithm moves on to the next largest partial
derivative and repeats the process from there. The algorithm

Algorithm 1: One Iteration of Steepest Parameter
Update (Chart 1)

Result: Update Circuit Assignment with a new
assignment that improves its Error

Let L be the library of available repressors
Let C be a Circuit with an initial set of repressors
Cassignment

Let E = 1− Scosine for C
Let CurrentError be the Error of C
if CurrentError ≥ threshold then

Let D be the gradient vector of E w.r.t. the
circuit’s parameters, sorted in descending order

while D is not empty and CurrentError has
not improved do

Let R be the Repressor with largest derivative
Dlargest in D

Let Rsorted be the list of all other repressors
in L sorted in ascending order by Euclidean
distance from R

Let Rclosest be the repressor that is closest to
R where
sign(Rclosest.param−D.param) =
sign(Dlargest)

if such an Rclosest exists then
Evaluate C after replacing R with
Rclosest

if E improves then
Let ReplacedError =
CurrentError

Update Cssignment to
ReplacedAssignment

Break
BestSwap← FindBestSwap(Circuit, R)
SwapError← Error of BestSwap
if SwapError < ReplacedError then

Let Cassignment be BestSwap;

Algorithm 2: Find Best Swap (Chart 2)
Result: Find circuit assignment from swapping all

repressors with current R with the best error
Let C be a Circuit with an initial set of repressors
Cassignment;

Let R be a repressor with which every other repressor
in the circuit will swap positions;

Let CurrentError be the Error of C;
for Every Repressor Rswap in the original

assignment that is not R do
Swap R with Rswap;
if the error of this new assignment is less than the
CurrentError then

return Circuit with new assignment

halts either when it has reached the maximum number of it-
erations or when the error is below a pre-defined threshold.
Algorithms 1 and 2 list the pseudo code for the approach de-
scribed above. Figure 1 shows an example trajectory of the
algorithm on a 3-input circuit.

Results
To evaluate the performance of the proposed algorithm, we
performed two sets of experiments. First, we used the cir-
cuits reported in the literature [3] and ran our algorithm to
generate repressor assignments. Second, we generated larger
test circuits and ran our algorithm as well as the Cello as-
signment algorithm to generate assignments. In our experi-
ments we set the maximum iterations to 1000 and the error
threshold to 2×10−6. To prevent the algorithm from stalling
at a local optimum, we re-initialize our algorithm 5 times, re-
turning in the end the run that delivered the best Range Score
to have a standard metric to compare with circuits reported
in the literature.

Three-input circuits
Since we expect our method to perform better on larger and
more complex circuits, we report tests on a subset of circuits
[3] containing at least 5 gates. For each circuit we made
calls to Cello’s API with a Verilog description of the cir-
cuit, which gave us the best range score out of 5 trajectories.
Similarly, with our algorithm we returned the assignment
that gave us the best range score out of 5 runs. Since we
do not account for toxicity and other part constraints in our
algorithm, we also disabled them when testing with Cello.
Similarly, to perform a fair comparison we disabled circuit
optimizations such as replacing the last repressor with a flu-
orescent reporter, in Cello.

Table 1 shows the results of our experiments on 3-input
circuits. Our algorithm successfully generates range scores
that are similar to the ones generated by the Cello algorithm.
In some cases, our algorithm finds an improved assignment
for the circuit. Notably, the algorithm found these assign-
ments in roughly 1000 evaluations, where an evaluation is
creating an assignment and scoring it. In comparison, the
Cello algorithm executed at most 1000 iterations but the
number of circuit assignments evaluated is not clear. Pre-
vious results indicate that a 3-input circuit can require up
to 40,000-60,000 evaluations [3]. Our algorithm assigns the
same circuits with roughly 1,000 evaluations.

Larger circuits
To evaluate the efficacy of our algorithm on even larger cir-
cuits, we first generated an expanded library based off a pub-
lished library of repressors [3]. After calculating the mean
and standard deviation of each parameter across all repres-
sors in the library, we randomly sampled K, ymin, ymax,
and n from a normal distribution to create new hypothet-
ical repressors for testing. For circuits up to 6 inputs, the
resulting library was 4 times the size of the existing one but
for circuits with more than 6 inputs, we generated a library
with up to 200 repressors. Then, we constructed hypotheti-
cal abstract circuits by first randomly generating a bit string

of length 2n where n is the number of desired inputs and
used it as the output column of the circuit’s truth table. Note
that a uniformly randomly generated bitstring would, on av-
erage, result in boolean functions that require large circuits;
thus, the circuits used for testing here are of sufficiently high
complexity. Using the truth table, we created a Verilog file
and used Cello’s API to generate an abstract circuit.

Table 2 shows the results of running the Cello algorithm
and our algorithm on larger circuits. We tested the algo-
rithms on 4-6 input circuits comprising 15-60 gates. (In
comparison, 3-input circuits contain less than a dozen gates.)
Cello’s simulated annealing approach performs well up to 5
inputs. For larger circuits, however, the algorithm is unable
to find a high scoring solution within the given number of
iterations. Our algorithm on the other hand is able to exam-
ine a few 100k assignments and still produce a high scoring
assignment. This provides support for our hypothesis that
an error-guided search can outperform a blind local search
algorithm.

Discussion
In this work, we introduce a new approach to the part assign-
ment problem, which is an important problem in the design
of synthetic genetic circuits. We introduce a scoring func-
tion, the cosine score, to evaluate the quality and correctness
of the truth table expected from a design. Similar to gradient-
based methods common in machine learning, we develop a
new error-guided search algorithm that determines the next
local modification to try out based on the partial derivatives
of the current solution. We tie the error measured for a de-
sign back to the parameters of the repressor transfer func-
tion, and use the parameters to find the closest replacement
repressor. Our approach matches the assignment correctness
and quality scores produced by Cello, a leading gate assign-
ment solver. We also test our algorithm using an expanded
synthetic repressor library and show that the algorithm is
scalable to larger number of inputs and a larger library. Our
work has approached this problem from a purely algorith-
mic standpoint, setting aside several other design rules re-
lated, for example, to toxicity and incompatible part com-
binations, to illustrate the central idea of our algorithm: we
believe that other design principles can be integrated with
our approach. Because the proposed approach determines
promising search directions as a function of changes in the
parameters defining a response function, it may be extensi-
ble to an approach that proposes parameters for the de novo
design of new genetic parts. This may allow the tuning or
creation of new genetic parts [1] for higher scoring circuits.
While the approach is presented here in the context of re-
pressor circuits, it may be extensible to other part assign-
ment problems with well-defined scoring functions.

References
[1] Ang, J.; Harris, E.; Hussey, B. J.; Kil, R.; and McMillen,

D. R. 2013. Tuning response curves for synthetic biology.
ACS synthetic biology 2(10):547–567.

[2] Brophy, J. A., and Voigt, C. A. 2014. Principles of
genetic circuit design. Nature methods 11(5):508–520.

Circuit hex Highest Scoring Cello Assignment Highest Range
score

Highest Scoring Algorithm Assignment Highest Range
score

0x01 HlyIIR H1, AmtR A1, QacR Q2, SrpR S2,
BM3R1 B1, PhlF P1

386.895 BM3R1 B3, PsrA R1, LitR L1, QacR Q2,
PhlF P1, SrpR S2

467.373

0x04 Amtr A1, PhlF P3, QacR Q1, BM3R1 B3,
SrpR S2

467.297 QacR Q1, AmtR A1, BM3R1 B2, PhlF P1,
SrpR S2

531.150

0x1c LitR L1, IcaRA I1, QacR Q1, BetI E1, PhlF
P3, SrpR S2

466.421 PhlF P1, LitR L1, BetI E1, BM3R1 B3,
QacR Q1, SrpR S2

443.491

0x3d PhlF P1, LitR L1, HlyIIR H1, QacR Q2,
BM3R1 B3, AmtR A1, SrpR S2

462.459 QacR Q1, BM3R1 B2, LitR L1, LmrA N1,
BetI E1, PhlF P2, SrpR S3

360.263

0x41 AmtR A1, HlyIIR H1, LitR L1, QacR Q2,
BM3R1 B3, PhlF P1, SrpR S2

451.789 PhlF P1, PsrA R1, LitR L1, BetI E1, QacR
Q2, BM3R1 B3, SrpR S2

386.444

0x4d QacR Q1, LitR L1, BM3R1 B1, BetI E1,
SrpR S3, PhlF P1

385.917 BM3R1 B2, SrpR S2, HlyIIR H1, AmtR
A1, QacR Q2, PhlF P3

324.081

0x60 QacR Q1, BM3R1 B3, LitR L1, BetI E1,
PhlF P3, SrpR S2

491.384 IcaRA I1, HlyIIR H1, AmeR F1, BetI E1,
PhlF P3, SrpR S2

479.583

0x78 QacR Q1, SrpR S3, LitR L1, BetI E1, PhlF
P3

448.660 AmtR A1, LitR L1, BM3R1 B3, PhlF P2,
QacR Q1, SrpR S2

368.070

0x81 HlyIIR H1, LitR L1, AmtR A1, QacR Q1,
SrpR S3, BM3R1 B2, PhlF P1

382.230 PsrA R1, LitR L1, BetI E1, IcaRA I1,
BM3R1 B3, SrpR S2, PhlF P1

324.762

0xbd BM3R1 B3, LitR L1, PhlF P1, Amtr A1,
BetI E1, QacR Q2, SrpR S3

429.067 IcaRA I1, HlyIIR H1, LmrA N1, BetI E1,
PhlF P2, BM3R1 B3, SrpR S2

398.773

0xe8 QacR Q1, LitR L1, PsrA R1, AmtR A1,
PhlF P3, BM3R1 B3, SrpR S2,

366.055 AmtR A1, QacR Q1, SrpR S2, PsrA R1,
LitR L1, BM3R1 B3, PhlF P1

317.709

0xf6 LitR L1, PhlF P1, HlyIIR H1, BetI E1,
AmtR A1, BM3R1 B1, QacR Q1, SrpR S2

464.646 LitR L1, AmeR F1, BM3R1 B2, QacR Q2,
AmtR A1, BetI E1, PhlF P3, SrpR S2

388.673

Table 1: Comparison of average Range scores by Cello versus average Range scores of the Steepest Parameter Update algorithm for circuits
with 5 or more gates.

[3] Nielsen, A. A.; Der, B. S.; Shin, J.; Vaidyanathan, P.;
Paralanov, V.; Strychalski, E. A.; Ross, D.; Densmore, D.;
and Voigt, C. A. 2016. Genetic circuit design automation.
Science 352(6281).

[4] Vaidyanathan, P.; Der, B. S.; Bhatia, S.; Roehner, N.;
Silva, R.; Voigt, C. A.; and Densmore, D. 2015. A frame-
work for genetic logic synthesis. Proceedings of the IEEE
103(11):2196–2207.

[5] Yaman, F.; Bhatia, S.; Adler, A.; Densmore, D.; and
Beal, J. 2012. Automated selection of synthetic biol-
ogy parts for genetic regulatory networks. ACS synthetic
biology 1(8):332–344.

Circuit hex
Cello Algorithm

Iterations Highest
Score

Iterations Circuit As-
signments

Differentia-
tion calcula-
tions

Highest
Score

0x9ebf 1093 3857.439 1000 1000 2923 207.357
0x39a0 343 3791.3432 1000 1000 32462 267.024
0xf88ff71b 421 3692.870 1000 2923 1000 238.121
0xf9f5373c 384 651.870 1000 11338 1000 147.666
0x420ce94
f5e3b163c

179 1.000 372 21536 374 659.523

0xc9d62
0d78e6012

172 1.000 332 466199 332 770.595

0xcf96882
1817b0844

156 1.000 309 309 285123 604.565

Table 2: Comparison between Cello and our algorithm of iterations, number of assignments checked, number of differentiation calculations
(for our algorithm) to obtain the highest scoring circuit.

Figure 1: A plot of the algorithm’s progression on a sample three-input-circuit. The circuit started with a sub-optimal assignment with a Range
score of only 1.000. Notably, while the difference in Range score between steps 1 and 2 is small, it shows a sharp increase in the Cosine
score after swapping out SrpR S1 for S3, indicating that the replacement helped orient the output vector into a more Boolean shape. In the
following 5 steps, the algorithm makes swaps and replacements that show a gradual growth in score, until step 7 when BM3R1 B3 and PhlF
P2 are swapped. With PhlF P2 as the final gate, the score increases by almost 100. By the 14th iteration, the algorithm has already found the
best combination of repressors and rearranges the order of the repressors until an optimal score is achieved.

